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The 'strongly implicit procedure '  is shown to be a general, easy-to-use, stable and computationally 
efficient method of  solving the mass transport  equations necessary to predict transient voltammetric 
responses of  electrode processes to which diffusion, convection and homogeneous chemical reaction 
may all contribute. The method is illustrated with a diversity of  problems relating to electrodes of  
both  micro- and milli-dimensions. In all cases excellent agreement with experiment and/or  existing 
analytical or numerical theory is noted. Comparisons are made with alternative computational methods. 

1. Introduction 

The quantitative interpretation of voltammetric 
experiments requires the solution of sets of coupled 
partial differential equations which describe the pro- 
cesses of diffusion, convection and homogeneous 
kinetic decay in the vicinity of an electrode surface. 
Various numerical strategies have been proposed in 
this content [1, 2] to fulfil this need, most of which 
require substantial computational sophistication in 
order to achieve useful results. The purpose of the 
present article is to recommend the Strongly Implicit 
Procedure (SIP), invented by Stone [3] and sub- 
sequently very widely applied in nonelectrochemical 
applications [4-7]. SIP is a fast iterative method of 
great convenience to experimentalists due to its ready 
availability [8] in the form of a standard subroutine in 
the NAG Fortran Library (D03EBF) which permits 
valid results to be obtained without recourse to more 
than the most elementary computational aspects of 
numerical simulation. In particular we build on our 
success in solving steady-state problems [9] using 
SIP and show the approach to readily permit the 
solution of a variety of transient voltammetric 
problems. 

Specifically, we consider first the response of a 
microband electrode to a potential step under diffu- 
sion only conditions. Existing analytical and numeri- 
cal theory is used to demonstrate the veracity of the 
results. Second, the problem of mass transport to 
microband electrodes located in a rectangular channel 
flow is tackled and the relative merits of alternative 
computational approaches, notably the Hopscotch 
algorithm [10-13] and the Backwards Implicit (BI) 
method pioneered by Laasonen [14-16], are assessed 
particularly in terms of computational efficiency. 
Finally the use of SIP in solving transient problems 
involving homogeneous kinetics is illustrated by 
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consideration of an ECE process, where the electrode 
and chemical reactions are coupled as shown, 
occurring at a microband channel electrode. 

2. Theory 

In the SIP a two dimensional partial differential equa- 
tion is cast into finite difference form using an implicit 
approximation [1] so as to generate a set of simulta- 
neous equations of five diagonal form: 

a~,jPi,j-1 + bl,jPi-l,j + cl,jPi,j ÷ dl,jPi+l,j 

+ el,jPi,j+l = qi,j (1) 

which can be re-cast as a matrix equation 

[a]{p} = {q} 

where {p} and {q} are K-dimensional vectors of 
unknown and known elements, respectively, { q } con- 
tains the boundary conditions and [A] is a K × K 
matrix. The trick of SIP is to modify [A] by the addi- 
tion of a matrix [B] such that [A] + [B] is factorable 
into a lower [L] and upper [U] triangular matrix so 
that [A] + [B] = [L][U]. The equation 

([A] + [B]){p} = {q}  + [B]{p} 

is solved iteratively 

([A] + [B]){p} k+l - {q} + [B]{p} k 

from a starting approximation {p}l. How [B] and 
{p}X are chosen and the specifics of the algorithm, 
including the determination of the iteration param- 
eters, are discussed elsewhere [3-8]: however given 
the essentially ubiquitous availability of the NAG 
library such detail is unnecessary for the experimental 
electrochemist seeking to interpret their results. All 
that is necessary is first to identify the appropriate 
mass transport equations and boundary conditions 
pertaining to the problem of interest and second to 
cast them into finite difference form which is then 
rearranged into the style of equation (1) so permitting 
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Fig. 1. Schematic diagram showing a microband electrode. The 
arrows represent the directions of diffusion to the electrode. 

the elements o f  matrices [-4] and {Q} to be specified 
for  inclusion in the D 0 3 E B F  subroutine. We next 
illustrate this exercise for the problems o f  interest as 
specified in the introduction.  

First  we examine the transient response o f  a micro- 
band  electrode under  diffusion only condit ions if the 
electrode potential  is stepped f rom a value at which 
no current  flows to one corresponding to the t ranspor t  
limited discharge o f  a species, A:  

A ± e -  ~ B 

The relevant mass t ranspor t  equat ion describing the 
spatial distr ibution o f  A is 

Oa 02a 02 a 

0-7 = D ~y2 + D Ox--- Z (2) 

where x and y are defined in Fig. 1, a is the concentra-  
t ion o f  species A and D its diffusion coefficient. 

The b o u n d a r y  condit ions pertinent to the problem 
of  interest after the potential  step has been applied 

are as follows: 

y = O  O < x < x e  a = O  

y = 0 x < 0 Oa/Oy = 0 

y = 0 x > xe Oa/Oy = 0 

y ~ +c~  all x a = ab~k 

al ly  x ~ - e c  a = abulk 

al ly x ~ -FOO a = abulk 

where x e is the electrode length. No te  that  the con- 
dition a = 0 corresponds to the t ranspor t - l imi ted  
regime. To solve Equat ion  2 we adopt  the finite 
difference grid shown in Fig. 2 which covers the x - y  
plane and has increments Ax  and Ay  in the x and y 
directions, respectively, so that  

y =jAy j = 0, 1,2,... ,NJ whereAy = nxe/NJ 
x = k A x  k=-K2, . . . , -1 ,O, I , . . . ,KI , . . . ,K  3 whereAx=xe/K 1 

where calculations in the y direction extend n electrode 
lengths into the solution, c~= (Ka/K1) electrode 
lengths in the negative x direction a n d / 3 ( =  {K3/K1}  
- 1 )  electrode lengths in the positive x direction. For  
diffusion only problems, a = /3 ;  however the general 
asymmetric grid is useful for calculations involving 
flow as will be described below. 

The SIP method  involves solving Equat ion  2 start- 
ing f rom an initial condi t ion in which the cell is uni- 
formly filled with A, 

t = 0 allx,  al ly a = abulk 

(a) 
=( 

y=NJAy ~ ~ 

o~x e x e 

y=O ..... N ," " ~!i:~ ........... i i~ 
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f 
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Fig. 2. (a) Finite-difference grid used for simulations. Note that 
there are NJ 'boxes' above the electrode, K1 along the electrode, 
K2 in the negative x direction and K 3 in total in the positive x direc- 
tion. If convective flow is present it is in the positive x direction, as 
shown. (b) Network of matrix elements required in the SIP for the 
computation of the term taj, k. 
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Fig. 3. Schematic diagram showing a microband channel electrode. 

For  t > 0 the boundary conditions previously identi- 
fied are supplied. Time increments At are used with 
a counter T so that 

t ¼ t * A t  for t * = 0 , 1 , 2 , . . . , T  

We use the symbol t*aj, k to denote the concentration 
of A at the coordinate (j,  k). Equation 2 becomes 

~+ laj, k - t a j ,  k 

At 

_ D ( t+ l  2t+1 + t + l  
(Ax) 2 aj, k+l -- aj, k aj, k _ l )  

D /t+l ~ 2t+l a @ t + l  
- t - ~ t ,  Uj+l,k -- j,k aj-l ,k) 

which is readily cast into the form of Equation 1. This 
is solved using the SIP algorithm applied in the 
standard manner [8] and the current evaluated from 
the following expression 

wFD[A]bulk /k x k ~ ,  t 
[ = ~ Z.~ al, k (3) 

k=l 

where w is the width of the microband electrode and F 
is Faraday's constant. 

Next, we consider the transient response due to a 
potential step on a microband electrode located in a 
channel flow cell (Fig. 3). The pertinent mass trans- 
port  equation becomes 

Oa 02a D 02a Oa 
Ot = D -~y 2 + ~ x  2 - V x o x  (4) 

where v~ represents the solution velocity profile in the 
x direction. The latter is parabolic, provided one is 
considering laminar flow and that a sufficiently long 
lead in section is present for the flow to become fully 
developed [17]. Quantitatively, 

where v o is the velocity at the centre of the channel 
and 2h is the channel depth (height). The boundary 
conditions pertinent to the problem of  interest become 

y = 0  O < X < X  e a = 0  

y = 0 x < 0 Oa/Oy = 0 

y = 0 x > Xe Oa/Oy = 0 

y = 2h all x Oa/Oy = 0 

ally x ~ - e c  a -= a b u l k  

ally x > +oo  Oa/Ox = 0 

In finite difference form Equation 4 is given by 

t+laj, k - t a j ,  k _  D 

A t  (A x)  2 

x (t+laj, k+l - 2t+laj, k +t+l  aj, k 1) 

D / t + l ~  , ~ t + l  ~ t + l  
+ (~-~y)2 k Uj+l,k - z  aj, k T  aj_l,k) 

Vx ( t + l  t + l  

2 A x  aj, k+l  - aj, k -  1) 

which again is readily rearranged to the form of Equa- 
tion 1, so permitting solution via the SIP. The current/ 
time response is then again computed via Equation 3. 

Finally, we turn to a consideration of potential step 
transients resulting from an ECE process at both 
micro- and milliband channel electrodes. This process 
is defined by the following reaction scheme in which 
the electroactive species, A, is first oxidized (reduced) 
to a species B which undergoes rapid decomposition 
to C. The latter then undergoes further electron trans- 
fer at the electrode: 

A + e -  B 

k 
B C 

C -4- e-  products 

The transient convective diffusion equations which 
describe the spatial distributions of A, B and C are 

Oa = D 02a 02a Oa 
0 t  ~y2 + D ~ x  2 - vx 0-~ (6) 

Ob D Ozb 02b Ob k .b  (7) 
o - ; •  + - Vx 

Oc D 02c 02c Oc 
a t  = -~y 2 + D ~ x  2 - V ~ ~ x  + k . b (8) 

where a = [A], b = [B], c = [C] and the diffusion 
coefficient, D, is assumed to be the same for all three 
molecules A, B and 
conditions are 

y = 0  0 < x < x e  

y = 0  x < 0  

y = O  X > X  e 

y -- 2h all x 

all y x ~ - o c  

ally x ~ +ec 

C. The pertinent boundary 

a = O, Oa/Oy = -Ob/Oy ,  c = 0 

Oa/Oy = Ob/Oy = Oc/Oy = 0 

Oa/Oy = o b / o y  = Oc/Oy = o 

Oa/Oy = Ob/Oy = Oc/Oy = 0 

a = abulk ~b = C = 0 

Oa/Ox = Oc/Ox = Ob/Ox = 0 

(9) 

To solve Equations 6, 7 and 8 we again cast them into 
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fmite difference f o r m  as i l lustrated by the following: 

'+ lb j ,~- '  Z,j,k = D 
At (Ax): 

× ('+%j,k+l - 2'+ %;,k +,+1 bj, k - ~ )  

+ D ~t+lL 21+lb +~+1b  
(Ay)-----7 ~ ~'j+~,k - ?,k ~-  1,eJ 

"Ux f t + l t ,  t + l  b t + l A  
, ~ Uj, lc+ 1 

Analogous  equat ions  m a y  be wri t ten for  a and  c. 
These  are solved using the s t rongly implicit  p rocedure  
appl ied in the s tandard  manne r  [8], solving first for  a, 
then b and  finally c, the concent ra t ion  profiles being 
' l inked '  t h rough  the bounda ry  condit ions (9), which 
dictate  this sequence of  solution, The  current  is then 
evaluated f rom the following expression 

wFD[A]bulkAx l~=X~ 
z = Ay ~ (<k + ~l,k) (m) 

k = l  

for  different flow rates and cell/electrode geometries.  

All prog rams  were wri t ten in Fo r t r an  77 and 
executed on a Silicon Graphics  Indigo [2]. 

3. Results and discussion 

We consider  first the theoretical  results obta ined  for  
potent ia l  step transients measured  at  m ic roband  elec- 
t rodes  under  diffusion only condit ions and  note  tha t  
app rox ima te  analytical  solutions have  been derived 
for this problem.  In  par t icular  the current  at  suffi- 
ciently short  t imes is given by the following equat ion  
[18, 19] originally due to O ldham [18] valid for  0 < 2. 

I = nFabulkD ~r~/2~i/2tl/a F 

, ( 1 F 1) I nFDabu~k ~ k, ~ 1120 t/2 

where 0 = Dt/x2~ and P is the electrode per imeter  
(~2w for  a mic roband  electrode). The  long t ime beha-  
viour  has been described by Aoki  [20] as 

I : nFabulkDwf(O ) 

(a) 60 

< 

= SIP 

/,0 

2 0 } ~  0tdham 

0 !  r J I " I t . . . .  r , t ~ ~ 

0 0.004 0 D08 0.012 0.016 0.020 

t /s 

(b) 

20 

< 
£ 

~=SIP 

10 ,, / t d h a m  

| Szabo - - - ~ ~ = - 
O| , ~ 1 I , i I I ~ I t J 

0 0.00~- 0,00g 0.012 0.016 0.020 

t/S 

Fig. 4. SIP simulated transients describing the current flowing due to a potential step at microband electrodes ((a) xe = 33/~m, w = 0.522 cm 
and (b) x~ = 20#m, w = (I.5 era) under diffusion only conditions. The following parameters were used in the simulations: (a) abulk = 1.139 x 
10 -6 molcm -3, D = 125 x I0 -5 cm 2 s -A, n% = 0.002cm and (b) abuj. k ~ -  [.0(} X l0 -° molcm -~, D = 2 x 10-" cm s - ,  nxe = 0.0025cm. 
Also shown on the Figures are the transients predicted by the analytical equations of Oldham and Szabo [15, 18]. 
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Fig. 5. A SIP simulated current transient induced by a potential step at a short microband electrode of dimensions xe = 4 #m and w = 0.364 
5 2 1 6 cm under diffusion only conditions. The following parameters were used in the simulations: D = 2.3 x 10 cm s- , a b u l k  = 1.14 x 10- 

mol cm 3 and nxe = 0.0024 cm. Also shown on the Figure are the transients predicted by the approximate analytical equations of Oldham 
[15], Szabo [18] and Aoki [17]. 

where 

f (O) = 27r[(ln(0) + 3) -1 - 0.577(ln(0) + 3) -2 

- 1.312(ln(0) + 3)-31 

and Szabo [21] as 

Tre- Z'f@ / 5 

I = nFDabulkw 4 v / ~  4 ln[(64e 70) 1/2 + e 5/3 

The latter expression is valid for  0 > 0.4. Figure 4 
shows the results o f  SIP simulations for electrodes 
o f  size xe = 20/*m and 33/,in, respectively. The other 
parameters  used in the simulations are specified in the 
figure legend. For  the purposes of  SIP simulation a 
grid size o f  500 x 500 was found to give converged 
currents to within three significant figures for times 
greater than 1 ms. The real time durat ion of  the two 
transients corresponds to 0 << 2 corresponding to 
the situation where the Oldham equat ion should be 

valid. The transients predicted by this equat ion are 
additionally shown in Fig. 4 and excellent agreement 
may  be noted. The Szabo equat ion in contrast  is, as 
expected for the time domain  considered, seen to 
give poor ,  but  not  entirely unacceptable agreement,  
except towards the longer time port ions o f  the transi- 
ents. This behaviour  should be contrasted with that  
shown in Fig. 5 which gives simulated results for a 
much shorter electrode of  length, x e = 4 #m. The x 
axis o f  this plot  is given in terms of  the normalized 
time, 0. The different regions o f  applicability o f  the 
approximate  analytical solutions are now evident. In 
particular the success o f  the Szabo equat ion at long 
times (0 > 0.4) is essentially quantitative whilst the 
increasing breakdown of  the Oldham equat ion at 
longer times is also clear. I t  has been suggested [22] 
that  the Oldham equat ion is accurate to within 5% 
for 0 < 2. Figure 5 shows that  this is unrealistically 
optimistic. Figure 5 also includes the long time asymp- 
tote derived by Aoki;  this is seen to approach  the 

aoo' 
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,,T. ~oc 
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UI ~ 1 3 ' D  ~ ~ m O ~ ~ ~ n Z G [3 [2 ~ C rn G y~ u ~ t  3 

I 1 ~ /  I I I 

0 0.2 0.4. 0.6 0.8 1.0 
t/s 

Fig. 6. SIP simulated current transient induced by a potential step at a band electrode of dimensions xe = 4 mm and w = 4 mm under diffu- 
5 2 1 6 3 sion only conditions. The following parameters were used in the simulations: D = 2.0 x 10- cm s- and abulk = 1.0 x 10- molcm- . Also 

shown on the Figure is the behaviour predicted by the Cottrell equation [20]. 
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3 1 Fig. 7. Simulated SIP transients  for channel mic roband  electrodes of  different sizes exposed to varying solution flow rates ( V f / c m  s -  ) as 
• follows: (a) x e = 33 # m  and Vf = 234  x 10 -3, (b) xe = 13 ~m and Vf = 5.79 x 10 -3, (e) x e = 4 #m and Vf = 1.36 x 10 -2. The following 
parameters  were used in the simulations: D = 1.75 x 10 -5 cm ~ s - l ,  ab~lk = 1.09 x 10 -~ tool cm -3 and 2h = 0.044 cm, The corresponding 
Peeler numbers ,  giving a measure  of the relative contr ibut ions of  convection and diffusion, are (a) Pe = 28; (b) Pe = 3.4. 

authentic behaviour only at very long times. Finally; 
Fig. 6 depicts a simulation for an xe = 4ram elec- 
trode. This is sufficiently large for diffusional edge 
effects to be effectively negligible and the transient 
quantitatively follows the behaviour predicted by the 
Cottrell equation [23] for semi-infinite diffusion in 
one-dimension. 

We examine next transients recorded for microband 
electrodes located in a channel flow cell and subject to 
convective mass transport  in addition to that from dif- 
fusion. Again the case of  a potential step from a value 
corresponding to no current flow to one which the 
transport-limited current was passed was considered. 
Channel microband electrodes of length (Xe) 8/~m, 

13 #m and 33 ~m located in a channel of dimensions 
2 h = 0 . 0 4 4 c m ,  d = 0 . 6 c m  and w = 0 , 5 2 2 c m  were 
simulated for D = 1.75 x 10 -5 cm 2 s - t  (corresponding 
to the literature value [24] for the diffusion coefficient 
of p-chloranil in acetonitrile solution) and a bulk 
concentration of  1.09 x 10 -6 tool cm -3 for the electro- 
active species; it was found that a finite difference grid 
size of 500 x 1000 was sufficient to give convergence 
to three significant figures for flow rates in the range 
1 × 10 -.3 t o  1 X 10- lcm 3 s -1. Figure 7 shows the 
results of  the SIP simulations in each case. The simu- 
lation of the microband channel transients was also 
examined using both the Hopscotch algorithm, which 
has been shown to generate results in excellent 



MODELLING ELECTRODE TRANSIENTS 871 

Q; 

20 

16 

12 

• =BI 

~=SIP 

. . . . .  0 ' 8  ' ' ' 0.4 1.6 
"t" 

Fig. 8. SIP simulated current transient induced by a potential step at a channel electrode of dimensions x e = 4 ram, w = 4 ram, for an ECE- 
type electrode process with k = 1 s -1 . The following parameters were used in the simulations: d = 6ram, C~bulk ~ I )< 10-6molcm 3, 
D = 2 x lO-S cmZ s-~ and Vf ~ l x lO~2 cm~ s-l. Pe = ~ 14200. 

agreement  with experiment [25] and the BI method  
(see In t roduct ion)  which can be used to solve the 
problem provided the effects o f  axial diffusion are 
neglected and the term D ( O 2 a / O x  2) is omit ted f rom 
Equat ion  4. The grid sizes required to achieve 
convergence to three significant figures for the 
Hopsco tch  method  were similar to those employed 
for SIP. The following values (Table I) were used 
as time increments and number  of  steps (T) ,  
respectively: 

Table 1 

Electrode size Time increment/s -~ Simulation time No. of steps 

4 #m 40 000 20 ms 800 
20 #m 20 000 20 ms 400 
33 #m 10 000 20 ms 200 
4 mm 1000 1 s 1000 

Inspection o f  the transients shown in Fig. 7 reveals 
tha t  there is excellent agreement  between the two cur- 
r en t - t ime  curves computed  f rom SIP and Hopscotch.  
At  short  times there is also correspondence with the 
BI transient a l though in general the latter tends to 
underest imate the current because o f  the neglect o f  
axial (x direction) diffusion. The relative merit  of  the 
SIP over the Hopsco tch  approach,  in addit ion to the 
advantages of  simplicity and ease-of-use identified 
earlier, can be noted if a compar ison  o f  the amounts  
o f  C P U  time required by the different simulation 
methods to produce a single, converged transient at 
a typical flow rate is made: SIP ~ 2 - 3  h, Hopsco tch  

10 h and BI ~ 10 rain. The benefits o f  SIP over Hops-  
cotch are significant a l though if the experimental con- 
ditions to be modelled permit the neglect o f  axial 
diffusion the BI method  is optimally efficient owing 
to the fact that  the BI method  relies only on vector cal- 

culations rather than m a t r i x  iterations. 

Last  we turn to the third example o f  the use o f  SIP 
for modell ing transients and consider the current/ t ime 

12 

10. 

8 

6 

IP 

I i l I ,,| .... I ( 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 
t/s 

Fig. 9. SIP simulated current transient induced by a potential step at a Channel microhand electrode of dimensions x~ = 30 #m, w = 4 mm for 
an ECE-type electrode process with k =  100s -~. The following parameters were used in the simulations: D =2.0 x 10-Scm2s -z, 
abulk = 1.0 x 10- molcm -:  and 2h = 0.04cm. 
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behaviour resulting f rom a potential step at a channel 
electrode where the electrode process constitutes an 
ECE reaction. Figure 8 shows the SIP transient for 
a large (xe= 4 m m )  channel electrode computed for 
a solution flow rate of  l x 10 .2 cm 3 s -1, a first order 
homogeneous rate constant (k) for the conversion of 
B to C (see above) of  1 s -1, and a cell geometry of 2 
h = 0.04 cm and d = 0.6 cm. The transient is shown 
in the form of a plot of  the effective number  of  elec- 
trons transferred, Neff, which varies between unity 
(for k = 0) and 2 (for k --, oc) against a dimensionless 
time parameter,  7-, previously defined as appropriate  
for channel electrodes of  other than microelectrode 
dimensions [16]: 

( 4 D v 2 ~  i/3 

Also shown in Fig. 8 is the corresponding transient 
computed using BI theory with the neglect of  axial 
diffusion (as above). The agreement between the two 
transients is quantitative to better than 0.1% as is 
expected for an electrode of the size examined [25, 26]. 
In contrast Fig. 9 shows the corresponding transient for 
an electrode with xe = 30 #m and k = 100 s -1, all other 
parameters being unchanged from those given in Fig. 8. 
In this case there is a marked contrast between the two 
demonstrating the significant contribution from axial 
diffusion in the case of  the microelectrode geometry. 
Both Figs 8 and 9 demonstrate the viability of the SIP 
approach for processes involving coupled homo- 
geneous kinetics. It  should be noted that if applicable 
the BI method is again substantially faster than the 
SIP method: the transients in Figs 8 and 9 required 
about 8-9 h of  CPU time in the case of SIP as opposed 
to about 30 min for BI. However in the case of  micro- 
electrodes with convection, the SIP is the method of 
choice since the neglect of  x direction diffusion is 
unrealistic and we have found the Hopscotch approach 
to be prohibitively expensive in CPU time if appro- 
priately converged results are to be obtained. 

4. Conclusions 

The SIP is readily available for use in the simulation 
of  voltammetric current/time transients through its 
appearance as the N A G  Library Subroutine D03EBF. 
As such it is recommended as a highly convenient 
method for the computer  modelling of experimental 
electrochemical data since it requires simply the for- 
mulation of  the problem of interest in terms of mass 
t ransport  equations, boundary  conditions and their 
finite-difference equivalents. The need for generating 
elaborate computer  code for the simulation itself is 
obviated. 

This paper  has shown that the SIP may be effec- 
tively applied to problems in which diffusion, convec- 
tion and homogeneous kinetics may significantly 
contribute, and to electrodes of  both micro and 
traditional dimensions. We anticipate its widespread 
adoption by experimental (and other) electrochemists. 
Note  further that the extension to include non- 
uniform grids should render the application of SIP 
even more computationally efficient. 
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